Analytic Properties of Shintani Zeta Functions

نویسنده

  • FRANK THORNE
چکیده

In this note, we describe various theoretical results, numerical computations, and speculations concerning the analytic properties of the Shintani zeta functions associated to the space of binary cubic forms. We describe how these zeta functions almost fit into the general analytic theory of zeta and L-functions, and we discuss the relationship between this analytic theory and counting problems involving cubic rings and fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Converse Theorem for Double Dirichlet Series and Shintani Zeta Functions

The main aim of this paper is to obtain a converse theorem for double Dirichlet series and use it to show that the Shintani zeta functions [13] which arise in the theory of prehomogeneous vector spaces are actually linear combinations of Mellin transforms of metaplectic Eisenstein series on GL(2). The converse theorem we prove will apply to a very general family of double Dirichlet series which...

متن کامل

Partial zeta functions

In this paper, we study analytic properties of zeta functions defined by partial Euler products.

متن کامل

Height Zeta Functions of Twisted Products

We investigate analytic properties of height zeta functions of toric bundles over flag varieties.

متن کامل

Bhargava Integer Cubes and Weyl Group Multiple Dirichlet Series

We investigate the Shintani zeta functions associated to the prehomogeneous spaces, the example under consideration is the set of 2 × 2 × 2 integer cubes. We show that there are three relative invariants under a certain parabolic group action, they all have arithmetic nature and completely determine the equivalence classes. We show that the associated Shintani zeta function coincides with the A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010